Selvittelen näitä voihappojohdannaisia. Aloitetaan aasta, eli otan ensin alfa-aminovoihapon. tästä löytyy myös aivostruktuurin aistinelimessä tärkeä molekyyli, silmän linssistä eräs happo.
AABA eli alfa-aminovoihappo tunentaan myös homoalaniinina biokemiassa ja se ei ole proteiinistruktuureja muodostavin aminohappoihin kuuluva. Sen kemiallinen kaava näissä 4 hiilen voihappojohdannaisissa on C4H9NO2. Homoalaniinia ( yhtä hiiltä pitempi kuin aminohappo alaniini) syntetisoituu oxovoihapon transaminoituessa. siis jos OHB saa OH ryhmän sijalle NH2- ryhmän. Esim aminohappo isoleusiinin mataboliassa muodostuu homoalaniinia, eli alfa-aminovoihappoa.
//Kommentti: Huomaan Harperin kartoista, että myös cysteiini-aminohaposta syntyy 4-hiilen voihappoja ensin homoseriinin muodostuttua ja siitä deaminaatiolla alfa-keto-voihappoa ja sen transaminaatiolla alfa-aminovoihappoa (AABA). Sitä on todettu ihmisessä jo 1969 varsinkin metioniinin saannin lisäännyttyä. Siis sitä syntyy essentielleistä aminohapoista. kataboliassa. (Sopii biomerkitsijäksi) //
Tätä AABA, alfa-aminovoihappoa käyttää non-ribosomaalinen peptidisyntaasientsyymi. Yksi esimerkki tällaisesta non-ribosomaalisesta peptidistä on silmän linssissä(tavattava oftalmihappo ( ophtalmic acid). Tämä havaittiin vasikan silmän linssistä. Alfa-aminohappo on aminovoihappoisomeeri. Sillä on kaksi muutakin isomeeria, toinen on GABA, gamma-aminovoihappo ja toinen on BABA, beeta-aminovoihappo,
- α-Aminobutyric acid (AABA), also known as homoalanine in biochemistry, is a non-proteinogenic alpha amino acid with chemical formula C4H9NO2. The straight two carbon side chain is one carbon longer than alanine, hence the prefix homo-. Homoalanine is biosynthesised by transaminating oxobutyrate, a metabolite in isoleucine biosynthesis. It is used by nonribosomal peptide synthases. One example of a nonribosomal peptide containing homoalanine is ophthalmic acid, which was first isolated from calf lens.α-Aminobutyric acid is an isomer of the amino acid aminobutyric acid. It has two other isomers, the neurotransmitter γ-Aminobutyric acid (GABA) and β-Aminobutyric acid (BABA) which is known for inducing plant disease resistance.
Proc Natl Acad Sci U S A. 2016 Apr 19;113(16):4252-9. doi: 10.1073/pnas.1603023113. Epub 2016 Mar 28.
Individual variability in human blood metabolites identifies age-related differences.
Abstract
Metabolites
present in human blood document individual physiological states
influenced by genetic, epigenetic, and lifestyle factors. Using
high-resolution liquid chromatography-mass spectrometry (LC-MS), we
performed nontargeted, quantitative metabolomics analysis in blood of 15
young (29 ± 4 y of age) and 15 elderly (81 ± 7 y of age) individuals.
Coefficients of variation (CV = SD/mean) were obtained for 126 blood
metabolites of all 30 donors. Fifty-five RBC-enriched metabolites, for
which metabolomics studies have been scarce, are highlighted here. We
found 14 blood compounds that show remarkable age-related increases or
decreases; they include
1,5-anhydroglucitol,
dimethyl-guanosine,
acetyl-carnosine,
carnosine,
ophthalmic acid,
UDP-acetyl-glucosamine,
N-acetyl-arginine,
N6-acetyl-lysine,
pantothenate,
citrulline,
leucine,
isoleucine,
NAD(+), and
NADP(+)
Six of them are RBC-enriched, suggesting that RBC metabolomics is highly valuable for human aging research. Age differences are partly explained by a decrease in antioxidant production or increasing inefficiency of urea metabolism among the elderly. Pearson's coefficients demonstrated that some age-related compounds are correlated, suggesting that aging affects them concomitantly. Although our CV values are mostly consistent with those CVs previously published, we here report previously unidentified CVs of 51 blood compounds. Compounds having moderate to high CV values (0.4-2.5) are often modified. Compounds having low CV values, such as ATP and glutathione, may be related to various diseases because their concentrations are strictly controlled, and changes in them would compromise health. Thus, human blood is a rich source of information about individual metabolic differences.
1,5-anhydroglucitol,
dimethyl-guanosine,
acetyl-carnosine,
carnosine,
ophthalmic acid,
UDP-acetyl-glucosamine,
N-acetyl-arginine,
N6-acetyl-lysine,
pantothenate,
citrulline,
leucine,
isoleucine,
NAD(+), and
NADP(+)
Six of them are RBC-enriched, suggesting that RBC metabolomics is highly valuable for human aging research. Age differences are partly explained by a decrease in antioxidant production or increasing inefficiency of urea metabolism among the elderly. Pearson's coefficients demonstrated that some age-related compounds are correlated, suggesting that aging affects them concomitantly. Although our CV values are mostly consistent with those CVs previously published, we here report previously unidentified CVs of 51 blood compounds. Compounds having moderate to high CV values (0.4-2.5) are often modified. Compounds having low CV values, such as ATP and glutathione, may be related to various diseases because their concentrations are strictly controlled, and changes in them would compromise health. Thus, human blood is a rich source of information about individual metabolic differences.
KEYWORDS:
CV value; aging markers; antioxidants; red blood cells; urea cycleWikipedia tarkentaa vielä oftalmisen hapon tekstin erikseen:
https://en.wikipedia.org/wiki/Ophthalmic_acid
Inga kommentarer:
Skicka en kommentar